Nonlinear analysis of an actuated seafloor-mounted carpet for a high-performance wave energy extraction

Author:

Alam Mohammad-Reza1

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA

Abstract

It is known that muddy seafloors can extract significant energy from overpassing surface waves via engaging them in strong interaction processes. If a synthetic seabed can respond to the action of surface gravity waves similar to the mud response, then it too can take out a lot of energy from surface waves. Analysis of the performance of a mud-resembling seabed carpet in harvesting ocean wave energy is the subject of this article. Specifically, and on the basis of the field measurements and observations of properties/responses of seafloor mud, we focus our attention on an artificial viscoelastic seabed carpet composed of (vertically acting) linear springs and generators. We show that the system of sea/synthetic-carpet admits two propagating wave solutions: the surface mode and the bottom mode. The damping of a surface-mode wave is proportional to its wavelength and hence is classic. However, the damping of a bottom-mode wave is larger for shorter waves, and is in general stronger than that of the surface-mode wave. To address the effect of (high-order) nonlinear interactions as well as to investigate the performance of our proposed carpet of wave energy conversion (CWEC) against a spectrum of waves, we formulate a direct simulation scheme based on a high-order spectral method. We show, by taking high-order nonlinear interactions into account, that the CWEC efficiency can be significantly higher for steeper waves. We further show that the bandwidth of high performance of the CWEC is broad, it yields minimal wave reflections and its theoretical efficiency asymptotically approaches unity within a finite and (relatively) short extent of deployment.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3