An introduction to the mechanics of the lasso

Author:

Brun Pierre-Thomas123,Ribe Neil2,Audoly Basile3

Affiliation:

1. Laboratory of Fluid Dynamics and Instabilities, EPFL, Lausanne 1015, Switzerland

2. Laboratoire FAST, Université Paris-Sud and CNRS, Bâtiment 502, Campus Universitaire, Orsay 91405, France

3. Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190 Institut Jean Le Rond d'Alembert, Paris 75005, France

Abstract

Trick roping evolved from humble origins as a cattle-catching tool into a sport that delights audiences all over the world with its complex patterns or ‘tricks’. Its fundamental tool is the lasso, formed by passing one end of a rope through a small loop (the honda) at the other end. Here, we study the mechanics of the simplest rope trick, the Flat Loop , in which the rope is driven by the steady circular motion of the roper's hand in a horizontal plane. We first consider the case of a fixed (non-sliding) honda. Noting that the rope's shape is steady in the reference frame rotating with the hand, we analyse a string model in which line tension is balanced by the centrifugal force and the rope's weight. We use numerical continuation to classify the steadily rotating solutions in a bifurcation diagram and analyse their stability. In addition to Flat Loops , we find planar ‘coat-hanger’ solutions, and whirling modes in which the loop collapses onto itself. Next, we treat the more general case of a honda that can slide due to a finite coefficient of friction of the rope on itself. Using matched asymptotic expansions, we resolve the shape of the rope in the boundary layer near the honda where the rope's bending stiffness cannot be neglected. We use this solution to derive a macroscopic criterion for the sliding of the honda in terms of the microscopic Coulomb static friction criterion. Our predictions agree well with rapid-camera observations of a professional trick roper and with laboratory experiments using a ‘robo-cowboy’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3