The mathematics of asymptotic stability in the Kuramoto model

Author:

Dietert Helge1,Fernandez Bastien2ORCID

Affiliation:

1. Institut de Mathématiques de Jussieu, Paris Rive Gauche, Université Paris 7 Denis Diderot - Sorbonne Paris Cité, 75205 Paris, Cedex 13 France

2. Laboratoire de Probabilités, Statistique et Modélisation, CNRS - Université Paris 7 Denis Diderot - Sorbonne Université, 75205 Paris Cedex 13 France

Abstract

Now a standard in Nonlinear Sciences, the Kuramoto model is the perfect example of the transition to synchrony in heterogeneous systems of coupled oscillators. While its basic phenomenology has been sketched in early works, the corresponding rigorous validation has long remained problematic and was achieved only recently. This paper reviews the mathematical results on asymptotic stability of stationary solutions in the continuum limit of the Kuramoto model, and provides insights into the principal arguments of proofs. This review is complemented with additional original results, various examples, and possible extensions to some variations of the model in the literature.

Funder

Université Sorbonne Paris Cité

European Union's Seventh Framework Programme

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference62 articles.

1. Kuramoto Y. 1975 Self-entrainment of a population of coupled nonlinear oscillators. In Int. Symp. on Mathematical Problems in Theoretical Physics: January 23–29 1975 Kyoto University Kyoto Japan (ed. H Araki). Lecture Notes in Physics vol. 39 pp. 420–422. Berlin Germany: Springer.

2. Chemical Oscillations, Waves, and Turbulence

3. The Kuramoto model: A simple paradigm for synchronization phenomena

4. Synchronization

5. Intrinsic Fluctuation and Its Critical Scaling in a Class of Populations of Oscillators with Distributed Frequencies

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Orientation Mixing in Active Suspensions;Annals of PDE;2023-10-20

2. MODELLING, SIMULATION AND MATHEMATICAL ANALYSIS OF DRONE SWARMS VIA ENTROPY METHODS;MATEMATICHE;2023

3. Synchronization for Networks of Globally Coupled Maps in the Thermodynamic Limit;Journal of Statistical Physics;2022-08-23

4. Multi-population phase oscillator networks with higher-order interactions;Nonlinear Differential Equations and Applications NoDEA;2022-08-12

5. On the trend to global equilibrium for Kuramoto oscillators;Annales de l'Institut Henri Poincaré C, Analyse non linéaire;2022-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3