Multi-population phase oscillator networks with higher-order interactions

Author:

Bick ChristianORCID,Böhle TobiasORCID,Kuehn Christian

Abstract

AbstractThe classical Kuramoto model consists of finitely many pairwisely coupled oscillators on the circle. In many applications a simple pairwise coupling is not sufficient to describe real-world phenomena as higher-order (or group) interactions take place. Hence, we replace the classical coupling law with a very general coupling function involving higher-order terms. Furthermore, we allow for multiple populations of oscillators interacting with each other through a very general law. In our analysis, we focus on the characteristic system and the mean-field limit of this generalized class of Kuramoto models. While there are several works studying particular aspects of our program, we propose a general framework to work with all three aspects (higher-order, multi-population, and mean-field) simultaneously. In this article, we investigate dynamical properties within the framework of the characteristic system. We identify invariant subspaces of synchrony patterns and study their stability. It turns out that the so called all-synchronized state, which is one special synchrony pattern, is never asymptotically stable. However, under some conditions and with a suitable definition of stability, the all-synchronized state can be proven to be at least locally stable. In summary, our work provides a rigorous mathematical framework upon which the further study of multi-population higher-order coupled particle systems can be based.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3