Locally stationary spatio-temporal interpolation of Argo profiling float data

Author:

Kuusela Mikael1ORCID,Stein Michael L.2

Affiliation:

1. Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

2. Department of Statistics, University of Chicago, Chicago, IL 60637, USA

Abstract

Argo floats measure seawater temperature and salinity in the upper 2000 m of the global ocean. Statistical analysis of the resulting spatio-temporal dataset is challenging owing to its non-stationary structure and large size. We propose mapping these data using locally stationary Gaussian process regression where covariance parameter estimation and spatio-temporal prediction are carried out in a moving-window fashion. This yields computationally tractable non-stationary anomaly fields without the need to explicitly model the non-stationary covariance structure. We also investigate Student t -distributed fine-scale variation as a means to account for non-Gaussian heavy tails in ocean temperature data. Cross-validation studies comparing the proposed approach with the existing state of the art demonstrate clear improvements in point predictions and show that accounting for the non-stationarity and non-Gaussianity is crucial for obtaining well-calibrated uncertainties. This approach also provides data-driven local estimates of the spatial and temporal dependence scales for the global ocean, which are of scientific interest in their own right.

Funder

NSF

US Department of Energy

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3