The role of additive and multiplicative noise in filtering complex dynamical systems

Author:

Gottwald Georg A.1,Harlim John2

Affiliation:

1. School of Mathematics and Statistics, The University of Sydney, New South Wales 2006, Australia

2. Department of Mathematics, North Carolina State University, PO BOX 8205, Raleigh, NC 27695, USA

Abstract

Covariance inflation is an ad hoc treatment that is widely used in practical real-time data assimilation algorithms to mitigate covariance underestimation owing to model errors, nonlinearity, or/and, in the context of ensemble filters, insufficient ensemble size. In this paper, we systematically derive an effective ‘statistical’ inflation for filtering multi-scale dynamical systems with moderate scale gap, , to the case of no scale gap with , in the presence of model errors through reduced dynamics from rigorous stochastic subgrid-scale parametrizations. We will demonstrate that for linear problems, an effective covariance inflation is achieved by a systematically derived additive noise in the forecast model, producing superior filtering skill. For nonlinear problems, we will study an analytically solvable stochastic test model, mimicking turbulent signals in regimes ranging from a turbulent energy transfer range to a dissipative range to a laminar regime. In this context, we will show that multiplicative noise naturally arises in addition to additive noise in a reduced stochastic forecast model. Subsequently, we will show that a ‘statistical’ inflation factor that involves mean correction in addition to covariance inflation is necessary to achieve accurate filtering in the presence of intermittent instability in both the turbulent energy transfer range and the dissipative range.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3