Optimal Parameter Estimation Techniques for Complex Nonlinear Systems

Author:

Kumar KaushalORCID,Kostina Ekaterina

Abstract

AbstractAccurate parameter estimation and state identification within nonlinear systems are fundamental challenges addressed by optimization techniques. This paper fills a critical gap in previous research by investigating tailored optimization methods for parameter estimation in nonlinear system modeling, with a particular emphasis on chaotic dynamical systems. We introduce and compare three optimization methods: a gradient-based iterative algorithm, the Levenberg-Marquardt algorithm, and the Nelder-Mead simplex method. These methods are strategically employed to simplify complex nonlinear optimization problems, rendering them more manageable. Through a comprehensive exploration of the performance of these methods in determining parameters across diverse systems, including the van der Pol oscillator, the Rössler system, and pharmacokinetic modeling, our study revealed that the accuracy and reliability of the Nelder-Mead simplex method were consistent. The Nelder-Mead simplex algorithm emerged as a powerful tool, that consistently outperforms alternative methods in terms of root mean squared error (RMSE) and convergence reliability. Visualizations of trajectory comparisons and parameter convergence under various noise levels further emphasize the algorithm’s robustness. These studies suggest that the Nelder-Mead simplex method has potential as a valuable tool for parameter estimation in chaotic dynamical systems. Our study’s implications extend beyond theoretical considerations, offering promising insights for parameter estimation techniques in diverse scientific fields reliant on nonlinear system modeling.

Funder

Ruprecht-Karls-Universität Heidelberg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3