Quantitative classification of vortical flows based on topological features using graph matching

Author:

Krueger Paul S.1ORCID,Hahsler Michael2,Olinick Eli V.2,Williams Sheila H.1,Zharfa Mohammadreza1

Affiliation:

1. Department of Mechanical Engineering, Information, and Systems, Southern Methodist University, Dallas, TX 75275, USA

2. Department of Engineering Management, Information, and Systems, Southern Methodist University, Dallas, TX 75275, USA

Abstract

Vortical flow patterns generated by swimming animals or flow separation (e.g. behind bluff objects such as cylinders) provide important insight to global flow behaviour such as fluid dynamic drag or propulsive performance. The present work introduces a new method for quantitatively comparing and classifying flow fields using a novel graph-theoretic concept, called a weighted Gabriel graph, that employs critical points of the velocity vector field, which identify key flow features such as vortices, as graph vertices. The edges (connections between vertices) and edge weights of the weighted Gabriel graph encode local geometric structure. The resulting graph exhibits robustness to minor changes in the flow fields. Dissimilarity between flow fields is quantified by finding the best match (minimum difference) in weights of matched graph edges under relevant constraints on the properties of the edge vertices, and flows are classified using hierarchical clustering based on computed dissimilarity. Application of this approach to a set of artificially generated, periodic vortical flows demonstrates high classification accuracy, even for large perturbations, and insensitivity to scale variations and number of periods in the periodic flow pattern. The generality of the approach allows for comparison of flows generated by very different means (e.g. different animal species).

Funder

National Science Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3