Are the dynamics of wall turbulence in minimal channels and larger domain channels equivalent? A graph-theoretic approach

Author:

Elnahhas Ahmed,Lenz Emma,Moin Parviz,Lozano-Durán Adrián,Jane Bae H.

Abstract

Abstract This work proposes two algorithmic approaches to extract critical dynamical mechanisms in wall-bounded turbulence with minimum human bias. In both approaches, multiple types of coherent structures are spatiotemporally tracked, resulting in a complex multilayer network. Network motif analysis, i.e., extracting dominant non-random elemental patterns within these networks, is used to identify the most dominant dynamical mechanisms. Both approaches, combined with network motif analysis, are used to answer whether the main dynamical mechanisms of a minimal flow unit (MFU) and a larger unconstrained channel flow, labeled a full channel (FC), at Reτ ≈ 180, are equivalent. The first approach tracks traditional coherent structures defined as low- and high-speed streaks, ejections, and sweeps. It is found that the roll-streak pairing, consistent with the current understanding of self-sustaining processes, is the most significant and simplest dynamical mechanism in both flows. However, the MFU has a timescale for this mechanism that is approximately 2.83 times slower than that of the FC. In the second approach, we use semi-Lagrangian wavepackets and define coherent structures from their energetic streak, roll, and small-scale phase space. This method also shows similar motifs for both the MFU and FC. It indicates that, on average, the most dominant phase-space motifs are similar between the two flows, with the significant events taking place approximately 2.21 times slower in the MFU than in the FC. This value is more consistent with the implied timescale ratio of only the slow speed streaks taking part in the roll-streak pairing extracted using the first multi-type spatiotemporal approach, which is approximately 2.17 slower in the MFU than the FC.

Publisher

IOP Publishing

Reference39 articles.

1. Coherent motions in the turbulent boundary layer;Robinson;Annu. Rev. Fluid Mech.,1991

2. Attached eddy model of wall turbulence;Marusic;Annu. Rev. Fluid Mech.,2019

3. The minimal flow unit in near-wall turbulence;Jiménez;J. Fluid Mech.,1991

4. Regeneration mechanisms of near-wall turbulence structures;Hamilton;J. Fluid Mech.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3