Affiliation:
1. Department of Mechanical Engineering, The University of Melbourne, Victoria 3010, Australia; emails: ,
Abstract
Modeling wall turbulence remains a major challenge, as a sufficient physical understanding of these flows is still lacking. In an effort to move toward a physics-based model, A.A. Townsend introduced the hypothesis that the dominant energy-containing motions in wall turbulence are due to large eddies attached to the wall. From this simple hypothesis, the attached eddy model evolved, which has proven to be highly effective in predicting velocity statistics and providing a framework for interpreting the energy-containing flow physics at high Reynolds numbers. This review summarizes the hypothesis itself and the modeling attempts made thereafter, with a focus on the validity of the model's assumptions and its limitations. Here, we review studies on this topic, which have markedly increased in recent years, highlighting refinements, extensions, and promising future directions for attached eddy modeling.
Cited by
274 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献