Minimum-drag shapes in magnetohydrodynamics

Author:

Zabarankin Michael1

Affiliation:

1. Department of Mathematical Sciences, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030, USA

Abstract

A necessary optimality condition for the minimum-drag shape for a non-magnetic solid body immersed in the uniform flow of an electrically conducting viscous incompressible fluid under the presence of a magnetic field is obtained. It is assumed that the flow and magnetic field are uniform and parallel at infinity, and that the body and fluid have the same magnetic permeability. The condition is derived based on the linearized magnetohydrodynamic (MHD) equations subject to a constraint on the body’s volume, and generalizes the existing optimality conditions for the minimum-drag shapes for the body in the Stokes and Oseen flows of a non-conducting fluid. It is shown that for any Hartmann number M , Reynolds number Re and magnetic Reynolds number Re m , the minimum-drag shapes are fore-and-aft symmetric and have conic vertices with an angle of 2 π /3. The minimum-drag shapes are represented in a function-series form, and the series coefficients are found iteratively with the derived optimality condition. At each iteration, the MHD problem is solved via the boundary integral equations obtained based on the Cauchy integral formula for generalized analytic functions. With respect to the equal-volume sphere, drag reduction as a function of the Cowling number S= M 2 /( Re mRe ) is smallest at S=1. Also, in the considered examples, the drag values for the minimum-drag shapes and equal-volume minimum-drag spheroids are sufficiently close.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimum-resistance shapes in linear continuum mechanics;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2013-12-08

2. Cauchy integral formula for generalized analytic functions in hydrodynamics;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2012-08-08

3. Generalized analytic functions in magnetohydrodynamics;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2011-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3