Affiliation:
1. Department of Mathematical Sciences, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030, USA
Abstract
A necessary optimality condition for the problem of the minimum-resistance shape for a rigid three-dimensional inclusion displaced in an unbounded isotropic elastic medium subject to a constraint on the volume of the inclusion is obtained through Betti's reciprocal work theorem. It generalizes Pironneau's optimality condition for the minimum-drag shape for a rigid body immersed into a uniform Stokes flow and is specialized for axisymmetric inclusions in axisymmetric and transversal translations. In both cases of translation, the three-dimensional displacement field is represented in terms of generalized analytic functions, and the three-dimensional elastostatics problem is reduced to boundary-integral equations (BIEs) via the generalized Cauchy integral formula. Minimum-resistance shapes are found in the semi-analytical form of functional series from an iterative procedure coupling the optimality condition and the BIEs. They are compared with the minimum-resistance spheroids and with the minimum-resistance spindle-shaped and lens-shaped bodies. Remarkably, in the axisymmetric translation, the minimum-resistance shapes transition from spindle-like shapes to almost prolate spheroidal shapes as the Poisson ratio changes from 1/2 to 0, whereas in the transversal translation, they are close to oblate spheroidal shapes for any Poisson ratio.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Matrix Difference Equations in Applied Mathematics;SIAM Journal on Applied Mathematics;2020-01
2. The other optimal Stokes drag profile;Journal of Fluid Mechanics;2014-11-27