Numerical simulations of turbulent thermal convection with a free-slip upper boundary

Author:

Hay W. A.1ORCID,Papalexandris M. V.1

Affiliation:

1. Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering, 1348 Louvain-la-Neuve, Belgium

Abstract

In this paper, we report on direct numerical and large-eddy simulations of turbulent thermal convection without invoking the Oberbeck–Boussinesq approximation. The working medium is liquid water and we employ a free-slip upper boundary condition. This flow is a simplified model of thermal convection of water in a cavity heated from below with heat loss at its free surface. Analysis of the flow statistics suggests similarities in spatial structures to classical turbulent Rayleigh–Bénard convection but with turbulent fluctuations near the free-slip boundary. One important observation is the asymmetry in the thermal boundary layer heights at the lower and upper boundaries. Similarly, the budget of the turbulent kinetic energy shows different behaviour at the free-slip and at the lower wall. Interestingly, the work of the mean pressure is dominant due to the hydrostatic component of the mean-pressure gradient but also depends on the density fluctuations which are small but, critically, non-zero. As expected the boundary-layer heights decrease with the Rayleigh number, due to increased turbulence intensity. However, independent of the Rayleigh number, the height of the thermal boundary layer at the upper boundary is always smaller than that on the lower wall.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3