Turbulent thermal convection in mixed porous–pure fluid domains

Author:

Hamtiaux Victoria,Papalexandris Miltiadis V.ORCID

Abstract

In this paper, we report on a direct numerical simulation (DNS) study of turbulent thermal convection in mixed porous–pure fluid domains. The computational domain consists of a cavity that contains a porous medium placed right above the bottom wall. The solid matrix is internally heated which, in turn, induces the convective motions of the fluid. The Rayleigh number of the flow in the pure fluid region above the porous medium is of the order of $10^7$ . In our study, we consider cases of different sizes of the porous medium, as well as cases with both uniform and non-uniform heat loading of the solid matrix. For each case, we analyse the convective structures in both the porous and the pure fluid domains and investigate the effect of the porous medium on the emerging flow patterns above it. Results for the flow statistics, as well as for the Nusselt number and each of its components, are also presented herein. Further, we make comparisons of the flow properties in this pure fluid region with those in Rayleigh–Bénard convection. Our simulations predict that, depending on the area coverage, the large-scale circulation above the porous medium can be in a single-roll, dual-roll or intermediate state. Also, when the area coverage increases, the temperatures inside it increase due to reduced fluid circulation. Accordingly, when the area coverage increases, then the Nusselt number becomes smaller whereas the Rayleigh number is increased.

Funder

Fonds De La Recherche Scientifique - FNRS

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3