Affiliation:
1. Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
Abstract
A long wave multi-dimensional approximation of shallow-water waves is the bi-directional Benney–Luke (BL) equation. It yields the well-known Kadomtsev–Petviashvili (KP) equation in a quasi one-directional limit. A direct perturbation method is developed; it uses underlying conservation laws to determine the slow evolution of parameters of two space-dimensional, non-decaying solutions to the BL equation. These non-decaying solutions are perturbations of recently studied web solutions of the KP equation. New numerical simulations, based on windowing methods which are effective for non-decaying data, are presented. These simulations support the analytical results and elucidate the relationship between the KP and the BL equations and are also used to obtain amplitude information regarding particular web solutions. Additional dissipative perturbations to the BL equation are also studied.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献