Resonantly interacting solitary waves

Author:

Miles John W.

Abstract

Resonant (phase-locked) interactions among three obliquely oriented solitary waves are studied. It is shown that such interactions are associated with the parametric end points of the singular regime for interactions between two solitary waves. The latter include regular reflexion at a rigid wall, which is impossible for ϕi < (3α)½ (ϕ = angle of incidence, α = amplitude/depth [Lt ] 1), and it is shown that the observed phenomenon of ‘Mach reflexion’ can be described as a resonant interaction in this regime. The run-up at the wall is calculated as a function of ϕi/(3α)½ and is found to have a maximum value of 4αd for ϕi = (3α)½. This same resonant interaction also describes diffraction of a solitary wave at a corner of internal angle π − ψi, −(3α)½, and suggests that a solitary wave cannot turn through an angle in excess of (3α)½ at a convex corner without separating or otherwise losing its identity.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference6 articles.

1. Wiegel, R. L. 1964b Water wave equivalent of Mach reflection.Proc. 9th Conf. Coastal Engng, A.S.C.E. chap. 6,pp.82–102.

2. Perroud, P. H. 1957 The solitary wave reflection along a straight vertical wall at oblique incidence. Ph.D. thesis. University of California, Berkeley.

3. Kaup, D. J. 1976 The three-wave interaction – a nondispersive phenomenon.Studies in Appl. Math. 55,9–44.

4. Chen, T. C. 1961 Experimental study on the solitary wave reflexion along a straight sloped wall at oblique angle of incidence.U.S. Beach Erosion Board Tech. Memo. no. 124.

5. Wiegel, R. L. 1964a Oceanographical Engineering .Prentice-Hall.

Cited by 272 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3