A framework for linear stability analysis of finite-area vortices

Author:

Elcrat Alan1,Protas Bartosz2

Affiliation:

1. Department of Mathematics, Wichita State University, Wichita, KS, USA

2. Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada

Abstract

In this investigation, we revisit the question of linear stability analysis of two-dimensional steady Euler flows characterized by the presence of compact regions with constant vorticity embedded in a potential flow. We give a complete derivation of the linearized perturbation equation which, recognizing that the underlying equilibrium problem is of a free-boundary type, is carried out systematically using methods of shape-differential calculus. Particular attention is given to the proper linearization of contour integrals describing vortex induction. The thus obtained perturbation equation is validated by analytically deducing from it stability analyses of the circular vortex, originally due to Kelvin, and of the elliptic vortex, originally due to Love, as special cases. We also propose and validate a spectrally accurate numerical approach to the solution of the stability problem for vortices of general shape in which all singular integrals are evaluated analytically.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the linear stability of the Lamb–Chaplygin dipole;Journal of Fluid Mechanics;2024-03-27

2. Steady Normal-Mode Vortices in Circular Cavities;The Quarterly Journal of Mechanics and Applied Mathematics;2022-08-01

3. Linear stability of inviscid vortex rings to axisymmetric perturbations;Journal of Fluid Mechanics;2019-07-15

4. Concentrated steady vorticities of the Euler equation on 2-d domains and their linear stability;Journal of Differential Equations;2019-05

5. Shape calculus for vortex patch equilibria and its application to lattice configurations;Journal of Computational and Applied Mathematics;2018-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3