Macromolecular crystallography at synchrotron radiation sources: current status and future developments

Author:

Duke E. M. H.1,Johnson L. N.12

Affiliation:

1. Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK

2. Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK

Abstract

X-ray diffraction with synchrotron radiation (SR) has revealed the atomic structures of numerous biological macromolecules including proteins and protein complexes, nucleic acids and their protein complexes, viruses, membrane proteins and drug targets. The bright SR X-ray beam with its small divergence has made the study of weakly diffracting crystals of large biological molecules possible. The ability to tune the wavelength of the SR beam to the absorption edge of certain elements has allowed anomalous scattering to be exploited for phase determination. We review the developments at synchrotron sources and beamlines from the early days to the present time, and discuss the significance of the results in providing a deeper understanding of the biological function, the design of new therapeutic molecules and time-resolved studies of dynamic events using pump–probe techniques. Radiation damage, a problem with bright X-ray sources, has been partially alleviated by collecting data at low temperature (100 K) but work is ongoing. In the most recent development, free electron laser sources can offer a peak brightness of hard X-rays approximately 10 8 times brighter than that achieved at SR sources. We describe briefly how early experiments at FLASH and Linear Coherent Light Source have shown exciting possibilities for the future.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference134 articles.

1. Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria

2. The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution

3. PHENIX: a comprehensive Python-based system for macromolecular structure solution;Adams P. D.;Acta Crystallogr.,2010

4. High-speed crystal detection and characterization using a fast-readout detector;Aishima J.;Acta Crystallogr.,2010

5. First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3