Earth's water reservoirs in a changing climate

Author:

Stephens Graeme L.1ORCID,Slingo Julia M.2,Rignot Eric13,Reager John T.1,Hakuba Maria Z.4,Durack Paul J.5ORCID,Worden John1,Rocca Remy6

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

2. Seafield House, Sidmouth, Devon EX10 8HF, UK

3. Department of Earth System Science, University of California, Irvine, CA 92697, USA

4. Department of Atmospheric Science, Colorado State University, Ft Collins, CO 80525, USA

5. Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

6. Observatoire Midi-Pyrénées, LEGOS, Toulouse, France

Abstract

Progress towards achieving a quantitative understanding of the exchanges of water between Earth's main water reservoirs is reviewed with emphasis on advances accrued from the latest advances in Earth Observation from space. These exchanges of water between the reservoirs are a result of processes that are at the core of important physical Earth-system feedbacks, which fundamentally control the response of Earth's climate to the greenhouse gas forcing it is now experiencing, and are therefore vital to understanding the future evolution of Earth's climate. The changing nature of global mean sea level (GMSL) is the context for discussion of these exchanges. Different sources of satellite observations that are used to quantify ice mass loss and water storage over continents, how water can be tracked to its source using water isotope information and how the waters in different reservoirs influence the fluxes of water between reservoirs are described. The profound influence of Earth's hydrological cycle, including human influences on it, on the rate of GMSL rise is emphasized. The many intricate ways water cycle processes influence water exchanges between reservoirs and thus sea-level rise, including disproportionate influences by the tiniest water reservoirs, are emphasized.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3