Control and prediction of the organic solid state: a challenge to theory and experiment

Author:

Price Sarah L.ORCID

Abstract

The ability of theoretical chemists to quantitatively model the weak forces between organic molecules is being exploited to predict their crystal structures and estimate their physical properties. Evolving crystal structure prediction methods are increasingly being used to aid the design of organic functional materials and provide information about thermodynamically plausible polymorphs of speciality organic materials to aid, for example, pharmaceutical development. However, the increasingly sophisticated experimental studies for detecting the range of organic solid-state behaviours provide many challenges for improving quantitative theories that form the basis for the computer modelling. It is challenging to calculate the relative thermodynamic stability of different organic crystal structures, let alone understand the kinetic effects that determine which polymorphs can be observed and are practically important. However, collaborations between experiment and theory are reaching the stage of devising experiments to target the first crystallization of new polymorphs or create novel organic molecular materials.

Funder

Eli Lilly and Company

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3