Machine learning assisted prediction of organic salt structure properties

Author:

Shapera Ethan P.ORCID,Bučar Dejan-Krešimir,Prasankumar Rohit P.,Heil ChristophORCID

Abstract

AbstractWe demonstrate a machine learning-based approach which predicts the properties of crystal structures following relaxation based on the unrelaxed structure. Use of crystal graph singular values reduces the number of features required to describe a crystal by more than an order of magnitude compared to the full crystal graph representation. We construct machine learning models using the crystal graph singular value representations in order to predict the volume, enthalpy per atom, and metal versus semiconductor/insulator phase of DFT-relaxed organic salt crystals based on randomly generated unrelaxed crystal structures. Initial base models are trained to relate 89,949 randomly generated structures of salts formed by varying ratios of 1,3,5-triazine and HCl with the corresponding volumes, enthalpies per atom, and phase of the DFT-relaxed structures. We further demonstrate that the base model is able to be extended to related chemical systems (isomers, pyridine, thiophene and piperidine) with the inclusion of 2000 to 10,000 crystal structures from the additional system. After training a single model with a large number of data points, extension can be done at significantly lower cost. The constructed machine learning models can be used to rapidly screen large sets of randomly generated organic salt crystal structures and efficiently downselect the structures most likely to be experimentally realizable. The models can be used as a stand-alone crystal structure predictor, but may serve CSP efforts best as a filtering step in more sophisticated workflows.

Funder

Enterprise Science Fund, Intellectual Ventures TUGraz Open Access Publishing Fund

Enterprise Science Fund, Intellectual Ventures

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3