A computational study on the three-dimensional printability of precipitate-strengthened nickel-based superalloys

Author:

Basoalto H. C.1ORCID,Panwisawas C.12ORCID,Sovani Y.1,Anderson M. J.1,Turner R. P.1,Saunders B.3,Brooks J. W.1

Affiliation:

1. School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

2. Currently at Department of Materials, University of Oxford, Oxford OX1 3PH, UK

3. Rolls-Royce plc., PO BOX 31, Derby DE24 8BJ, UK

Abstract

This paper presents a computational framework to study the differences in process-induced microvoid and precipitate distributions during selective laser melting (SLM) of two nickel-based superalloys representative of low (IN718) and high (CM247LC) volume fraction precipitate-strengthened alloys. Simulations indicate that CM247LC has a higher propensity to form process-induced microvoids than IN718. Particle sintering is predicted to be strongly influenced by the powder size distribution. For deposition thickness of approximately 40 μm, thermal gradients during cooling are predicted to be larger for CM247LC than IN718 and consequently expect the development of larger residual stresses for a high volume fraction γ ′ alloy. A coupled mean field/finite-element approach has been used to predict the precipitate distributions across a simple rectangular build and during a subsequent hot isostatic pressing (HIP) cycle. Unimodal and multi-modal particle distributions are predicted for IN718 and CM247LC at the end of the SLM, respectively. A higher volume fraction of γ ′ is predicted for CM247LC at the end of the SLM process. During HIP, simulations indicate a dramatic increase in the γ ′ volume fraction in CM247LC, which can result in a reduction in stress relaxation and lead to a ductility drop.

Funder

Aerospace Technology Institute

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3