Pore evolution mechanisms during directed energy deposition additive manufacturing

Author:

Zhang KaiORCID,Chen YunhuiORCID,Marussi SebastianORCID,Fan XianqiangORCID,Fitzpatrick MaureenORCID,Bhagavath Shishira,Majkut MartaORCID,Lukic Bratislav,Jakata Kudakwashe,Rack AlexanderORCID,Jones Martyn A.,Shinjo JunjiORCID,Panwisawas ChinnapatORCID,Leung Chu Lun AlexORCID,Lee Peter D.ORCID

Abstract

AbstractPorosity in directed energy deposition (DED) deteriorates mechanical performances of components, limiting safety-critical applications. However, how pores arise and evolve in DED remains unclear. Here, we reveal pore evolution mechanisms during DED using in situ X-ray imaging and multi-physics modelling. We quantify five mechanisms contributing to pore formation, migration, pushing, growth, removal and entrapment: (i) bubbles from gas atomised powder enter the melt pool, and then migrate circularly or laterally; (ii) small bubbles can escape from the pool surface, or coalesce into larger bubbles, or be entrapped by solidification fronts; (iii) larger coalesced bubbles can remain in the pool for long periods, pushed by the solid/liquid interface; (iv) Marangoni surface shear flow overcomes buoyancy, keeping larger bubbles from popping out; and (v) once large bubbles reach critical sizes they escape from the pool surface or are trapped in DED tracks. These mechanisms can guide the development of pore minimisation strategies.

Funder

Rolls-Royce

RCUK | Engineering and Physical Sciences Research Council

We also acknowledge the use of facilities and support provided by the Research Complex at Harwell.

This work is partially supported by Next Generation TATARA Project sponsored by the Government of Japan and Shimane Prefecture.

Royal Academy of Engineering

European Synchrotron Radiation Facility

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3