Development of a simple quantitative test for lack of field emission orthodoxy

Author:

Forbes Richard G.1

Affiliation:

1. Advanced Technology Institute and Department of Electronic Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK

Abstract

The orthodox emission hypothesis is a set of physical and mathematical assumptions that permit well-specified analysis of measured current–voltage data relating to field electron emission (FE). If these assumptions are not adequately satisfied, then widely used FE data-analysis methods can generate spurious values for emitter characterization parameters, particularly field enhancement factors (FEFs). This paper describes development of a simple quantitative test for whether FE data are incompatible with the hypothesis. It applies to any geometrical emitter shape and any Fowler–Nordheim (FN) plot type, and involves extracting the related range of scaled-barrier-field values ( f values). By analysing historical data, this paper identifies ‘apparently reasonable’ and ‘clearly unreasonable’ experimental ranges for f . The historical data, taken between 1926 and 1972, are internally self-consistent. This test is then applied to 19 post-1975 datasets, mainly for various carbon and semiconductor nanostructures. Some extracted f -value ranges (including many carbon results) are apparently reasonable, some are clearly unreasonable. It is shown that if extracted f values are ‘unreasonably high’, then FEF values extracted by literature methods are spuriously large. New materials and published FN plots that generate particularly high FEF values require testing, and improved data-analysis theory is needed for non-orthodox emitters. A spreadsheet for implementing the test is provided.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3