Comparative analysis of surface layer functionality in STM and AFM probes: Effects of coating on emission characteristics

Author:

Knápek Alexandr12,Allaham Mohammad M.13,Košelová Zuzana12,Burda Daniel12,Podstránský Jáchym1,Mousa Marwan S.4,Sobola Dinara15

Affiliation:

1. Institute of Scientific Instruments of the CAS , Královopolská 147 , Brno , Czech Republic

2. Department of Microelectronics , Faculty of Electrical Engineering and Communication, Brno University of Technology , Technická 10 , Brno , Czech Republic

3. Central European Institute of Technology , Brno University of Technology , Purkyňova 123 , Brno , Czech Republic .

4. Department of Renewable Energy Engineering , Jadara University , Irbid , Jordan

5. Institute of Physics of Materials of the CAS , Žižkova 22 , Brno , Czech Republic

Abstract

Abstract This study compares different types of scanning probe microscopy (SPM) probes according to the function of the surface layer at the tip apex. Three main types of SPM probes were analyzed: scanning tunneling microscopy (STM) tungsten probes, conductive atomic force microscopy (AFM) probes, and non-conductive AFM probes. The tungsten STM probes were coated with a graphite layer to simulate the effects of carbonization. The tested AFM probes were specifically NenoProbe conductive AFM probes (platinum-coated tip) and Akiyama non-conductive AFM probes coated with gold. The gold coating is intended to improve surface conductivity and help achieve a homogeneous, oxidation-resistant surface. The three samples were measured in a field emission microscope to study their current-voltage characteristics. The obtained current-voltage characteristics were tested and analyzed by the Forbes field emission orthodoxy test, providing the field emission parameters that correlate with the state of the scanning probe tip. In this study, the most important parameter is the formal emission area parameter, which indicates the formal tunneling current density through the probe tip-sample nanogap. For an STM tip, this reflects the size and shape of the region from which electrons tunnel to the sample surface. If this area is larger than expected or desired, it may indicate problems with tip function or tip wear. This information is critical for evaluating the performance and accuracy of the STM tip and can help diagnose problems and optimize its function.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3