Modelling density segregation in flowing bidisperse granular materials

Author:

Xiao Hongyi1ORCID,Umbanhowar Paul B.1,Ottino Julio M.123,Lueptow Richard M.13

Affiliation:

1. Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA

2. Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA

3. The Northwestern University Institute on Complex Systems (NICO), Northwestern University, Evanston, IL 60208, USA

Abstract

Preventing segregation in flowing granular mixtures is an ongoing challenge for industrial processes that involve the handling of bulk solids. A recent continuum-based modelling approach accurately predicts spatial concentration fields in a variety of flow geometries for mixtures varying in particle size. This approach captures the interplay between advection, diffusion and segregation using kinematic information obtained from experiments and/or discrete element method (DEM) simulations combined with an empirically determined relation for the segregation velocity. Here, we extend the model to include density-driven segregation, thereby validating the approach for the two important cases of practical interest. DEM simulations of density bidisperse flows of mono-sized particles in a quasi-two-dimensional-bounded heap were performed to determine the dependence of the density-driven segregation velocity on local shear rate and particle concentration. The model yields theoretical predictions of segregation patterns that quantitatively match the DEM simulations over a range of density ratios and flow rates. Matching experiments reproduce the segregation patterns and quantitative segregation profiles obtained in both the simulations and the model, thereby demonstrating that the modelling approach captures the essential physics of density-driven segregation in granular heap flow.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3