Continuum modelling of size segregation and flow in dense, bidisperse granular media: accounting for segregation driven by both pressure gradients and shear-strain-rate gradients

Author:

Singh HarkiratORCID,Liu DarenORCID,Henann David L.ORCID

Abstract

Dense mixtures of particles of varying size tend to segregate based on size during flow. Granular size segregation impacts many industrial and geophysical processes, but the development of coupled, continuum models capable of predicting the evolution of segregation dynamics and flow fields in dense granular media across different geometries remains a challenge. One reason is because size segregation stems from two driving forces: pressure gradients and shear-strain-rate gradients. Another reason is the challenge of integrating segregation models with rheological constitutive equations for dense granular flow. In this paper we develop a continuum model that accounts for pressure-gradient-driven and shear-strain-rate-gradient-driven segregation, coupled to rheological modelling of a dense granular medium across the quasi-static and dense inertial flow regimes. To calibrate and test the continuum model, we perform discrete element method (DEM) simulations of dense flow of bidisperse granular systems in two flow geometries in which both segregation driving forces are present: inclined plane flow and planar shear flow with gravity. Steady-state DEM data from inclined plane flow is used to determine the dimensionless material parameters in the pressure-gradient-driven segregation model for both spheres and disks. Then, predictions of the continuum model are tested against DEM data across different cases of inclined plane flow and planar shear flow with gravity, while varying parameters such as the size of the flow geometry, the flow speed and the initial conditions. We find that it is crucial to account for both driving forces to capture segregation dynamics across both flow geometries with a single set of parameters.

Funder

National Science Foundation

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3