XII. On the polarisation of light by oblique transmission through all bodies, whether crystallized or uncrystallized. By David Brewster, LL.D. F. R. S. Edin. and F. S. A. Edin. In a letter addressed to Taylor Combe, Esq. Sec. R. S

Author:

Abstract

Sir, In a letter on “ the Affections of Light in its passage through crystallized Bodies," which I had the honour of transmitting a few days ago to the Royal Society through Sir HUMPHRY DAVY, I alluded to a series of experiments which I had in view for the purpose of generalising the various phenomena which had been described. At the very commencement of this enquiry I have been led to the important general result “ that “ light transmitted obliquely through all transparent bodies, “ whether crystallized or uncrystallized, suffers polarisation " like one of the pencils formed by doubly refracting crystals," and I hasten to communicate to you a brief sketch of the nature and consequences of this discovery. In examining if any change was produced upon common light during its passage along the oblique depolarising axis of mica, I observed, in one position of the mineral, some appearances which indicated a partial polarisation of the incident rays. Upon turning the mica round, so as to preserve its obliquity to the incident pencil, the same phenomena presented themselves in every part of the revolution of the mica, and the quantity of polarised light was found to increase with the obliquity of its incidence. I then substituted a plate of glass instead of the mica, and a similar result was obtained, though the quantity of polarised light was considerably less titan in the first experiment. By adding one plate of glass after another, the number of polarised rays was increased by the addition of each plate, and when the plates amounted to fifteen , the transmitted pencil was wholly polarised at an angle of about 70° 17', and possessed all the properties of that species of light.

Publisher

The Royal Society

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3