Design of graded-index lenses in the superposition eyes of scarab beetles

Author:

Abstract

Superposition-image quality in the clear-zone eye depends in the first instance on the optical characteristics of the lens elements in each ommatidium. The optical design strategy of the two lens elements, a thick corneal facet and an underlying crystalline cone, in the scarab eye is reported. The formation of a good superposition image at the rhabdom layer in the eye demands that the lens elements be precisely arrayed, virtually free of optical aberrations, and that each lens pair function as an afocal (telescopic) lens system with an internal intermediate focal plane. The optical properties of the corneal facet were examined by a variety of means. The isolated corneas of most scarab species focused good quality images of a distant object. Cardinal-point analysis of the intact corneal lens revealed that the back focal point of the lens lies just proximal to the inner corneal surface, many micrometres distal to the rhabdom layer, and the position of the principal planes suggested that the corneal lens had internal lens-cylinder properties. This was confirmed by the examination of the focusing power of transverse lens slices of known thickness; the power of the corneal lens slice was a function of its thickness. Interference refractometry of corneal sections revealed that the facet is a graded-refractive-index (g.r.i.) lens in the great majority of more than 40 scarab species examined. The position of the back focal point is achieved in a thick corneal lens by (i) the presence of a g.r.i. lens, best developed in the proximal corneal region, where it consists of a g.r.i. lens cylinder capped by a g.r.i. lens hemisphere, and (ii) the loss of front facet curvature in the homogeneous distal corneal region. In situ , the back focal point lies deep within the crystalline cone. Since the quality of the superposition image depends on the exact location of the intermediate-image plane in the crystalline cone, this position was determined from a comparative analysis of cone shape, experimental observations, and theoretical modelling of the cone. Four observations, namely the presence of a waist in the crystalline cone of many species, the back focal distance of the isolated cornea when the refractive index (r.i.) of the medium in the back focal space approximated that situ, the presence of screening pigment around specific regions of the crystalline cone and the position of the intermediate-image plane in the exocone of a passalid beetle eye, all suggested that the intermediate focus lies in the waist region. The proximal region of the crystalline cone was modelled on the basis of its known g.r.i. lens properties. The model used comprised a radial g.r.i. lens cylinder with a parabolic profile in r.i., terminating in a g.r.i. lens hemiellipsoid. Dimensions and r.i. distribution in the model were based on values from real cones. The model cone focused an incident parallel beam to a point within the cone corresponding to the waist region in real cones. For beams at angles as great as 20° to the optic axis, aberrations in the model cone are small, and restricted to the most peripheral rays. A homogeneous hemiellipse of similar dimensions has severe aberrations for beams at an angle to the optic axis. The model predicts that the ommatidial optics are diffraction-limited; the spread of rays leaving the proximal cone tip due to diffraction at the small exit aperture of the cone (for all aperture diameters) is broader than that due to lens aberrations. Consequently, tolerance exists to optical imperfections in the lens components and their spacing. A tolerance in the position of the intermediate focal plane of + 2-3 pm was calculated. Lens design is strongly correlated with the daily activity pattern of the scarab species under consideration. The corneal facets of nocturnal and crepuscular species are wide with little individual facet curvature; such ‘glacial’ corneas are completely transparent. The crystalline cone is large and well developed. In diurnal species, the corneal facets are narrower, with strong individual curvature, and the corneal lens cylinders are often lined with a brown screening pigment. The crystalline cones of diurnal scarabs are frequently strongly waisted or greatly reduced in size. Pigment surrounding the cone waist serves as a field stop limiting the angular acceptance of the ommatidial optics. The waist limits the number of ommatidia that can contribute to the superposition image and therefore determines the maximum aperture of the eye. This aperture is greatest in nocturnal species with little or no waist constriction in the crystalline cone. Most scarab clear-zone eyes are of the eucone type (separate crystalline cone). However, in the Passalidae and bolboceratine and pleocomine Geotrupidae, the crystalline cone is replaced by a corneal g.r.i. lens extension, the exocone, that serves as an optical analogue of the crystalline cone.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Reference2 articles.

1. T he com parative internal larval anatom y of several genera o f S carabaeidae (Goleoptera). Ann.ent;Soc. Am.,1957

2. The physiological optics of Dinopis subrufus L. Koch: A fish-lens in a spider

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3