On methods for studying stochastic disease dynamics

Author:

Keeling M.J1,Ross J.V2

Affiliation:

1. Departments of Biological Sciences and Mathematics Institute, University of WarwickGibbet Hill Road, Coventry CV4 7AL, UK

2. Mathematics Institute, University of WarwickGibbet Hill Road, Coventry CV4 7AL, UK

Abstract

Models that deal with the individual level of populations have shown the importance of stochasticity in ecology, epidemiology and evolution. An increasingly common approach to studying these models is through stochastic (event-driven) simulation. One striking disadvantage of this approach is the need for a large number of replicates to determine the range of expected behaviour. Here, for a class of stochastic models called Markov processes, we present results that overcome this difficulty and provide valuable insights, but which have been largely ignored by applied researchers. For these models, the so-called Kolmogorov forward equation (also called the ensemble or master equation) allows one to simultaneously consider the probability of each possible state occurring. Irrespective of the complexities and nonlinearities of population dynamics, this equation is linear and has a natural matrix formulation that provides many analytical insights into the behaviour of stochastic populations and allows rapid evaluation of process dynamics. Here, using epidemiological models as a template, these ensemble equations are explored and results are compared with traditional stochastic simulations. In addition, we describe further advantages of the matrix formulation of dynamics, providing simple exact methods for evaluating expected eradication (extinction) times of diseases, for comparing expected total costs of possible control programmes and for estimation of disease parameters.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Reference70 articles.

1. Extinction Dynamics in Mainland–Island Metapopulations: An N-patch Stochastic Model

2. Stochastic amplification in epidemics;Alonso D;J. R. Soc. Interface,2006

3. Anderson R.M& May R.M. 1992 Infectious diseases of humans. Oxford UK:Oxford University Press.

4. Vancomycin-resistant enterococci in intensive-care hospital settings: Transmission dynamics, persistence, and the impact of infection control programs

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3