Development of magnesium calcium phosphate biocement for bone regeneration

Author:

Jia Junfeng1,Zhou Huanjun1,Wei Jie1,Jiang Xin1,Hua Hong1,Chen Fangping1,Wei Shicheng2,Shin Jung-Woog3,Liu Changsheng1

Affiliation:

1. Key Laboratory for Ultrafine Materials of Ministry of Education, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China

2. Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Inter-disciplinary Studies, Peking University, Beijing 100871, People's Republic of China

3. Department of Biomedical Engineering, Inje University, First Research Group/BK-21, Gimhae 621-749, Republic of Korea

Abstract

Magnesium calcium phosphate biocement (MCPB) with rapid-setting characteristics was fabricated by using the mixed powders of magnesium oxide (MgO) and calcium dihydrogen phosphate (Ca(H 2 PO 4 ) 2 ·H 2 O). The results revealed that the MCPB hardened after mixing the powders with water for about 7 min, and the compressive strength reached 43 MPa after setting for 1 h, indicating that the MCPB had a short setting time and high initial mechanical strength. After the acid–base reaction of MCPB containing MgO and Ca(H 2 PO 4 ) 2 ·H 2 O in a molar ratio of 2 : 1, the final hydrated products were Mg 3 (PO 4 ) 2 and Ca 3 (PO 4 ) 2 . The MCPB was degradable in Tris–HCl solution and the degradation ratio was obviously higher than calcium phosphate biocement (CPB) because of its fast dissolution. The attachment and proliferation of the MG 63 cells on the MCPB were significantly enhanced in comparison with CPB, and the alkaline phosphatase activity of MG 63 cells on the MCPB was significantly higher than on the CPB at 7 and 14 days. The MG 63 cells with normal phenotype spread well on the MCPB surfaces, and were attached in close proximity to the substrate, as seen by scanning electron microscopy (SEM). The results demonstrated that the MCPB had a good ability to support cell attachment, proliferation and differentiation, and exhibited good cytocompatibility.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3