A tough injectable self‐setting cement‐based hydrogel for noninvasive bone augmentation

Author:

Jin Peng123,Xia Mingjie4,Hasany Masoud3,Feng Pan12,Bai Jing15,Gao Jian12,Zhang Wei16ORCID,Mehrali Mehdi3,Wang Ruixing12

Affiliation:

1. School of Materials Science and Engineering Nanjing China

2. Jiangsu Key Laboratory of Construction Materials Southeast University Nanjing China

3. Department of Civil and Mechanical Engineering Technical University of Denmark Kgs Lyngby Denmark

4. Department of Orthopedics, Nanjing First Hospital Nanjing Medical University Nanjing China

5. Institution of Medical Devices (Suzhou) Southeast University Nanjing China

6. Jiangsu Key Laboratory of Advanced Metallic Materials Southeast University Nanjing China

Abstract

AbstractComposite hydrogels with excellent properties can open new opportunities to terminate the need for auto/allografts in bone augmentations. However, their clinical application has been limited by their insufficient mechanical strength and lack of osteoinductivity. Here we report a new strategy to design an injectable bioactive double network hydrogel reinforced by inorganic calcium/magnesium phosphate cement (CMPC) hydrates to meet the mechanical performance requirements for bone regeneration. The engineered CMPC hydration endows the composite hydrogel with an appropriate gelation time and temperature for injection, which shows no harm in the defect site. CMPC hydrates could also provide a lower swelling ratio and higher biodegradation rate fitting the in vivo bone regeneration needs. In vitro and in vivo experiments prove that the ions released from inorganic particles endow biocompatibility, cell migration, adhesion, differentiation, and significantly higher bone regeneration capacity. Taken together, the simple addition of CMPC particles imparts in‐demand features that bring us closer to the clinical utilization of hydrogel‐based materials for bone regeneration.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3