Design principles for phase-splitting behaviour of coupled cellular oscillators: clues from hamsters with ‘split’ circadian rhythms

Author:

Indic Premananda1,Schwartz William J1,Paydarfar David12

Affiliation:

1. Department of Neurology, University of Massachusetts Medical SchoolWorcester, MA 01655, USA

2. Department of Physiology, University of Massachusetts Medical SchoolWorcester, MA 01655, USA

Abstract

Nonlinear interactions among coupled cellular oscillators are likely to underlie a variety of complex rhythmic behaviours. Here we consider the case of one such behaviour, a doubling of rhythm frequency caused by the spontaneous splitting of a population of synchronized oscillators into two subgroups each oscillating in anti-phase ( phase-splitting ). An example of biological phase-splitting is the frequency doubling of the circadian locomotor rhythm in hamsters housed in constant light, in which the pacemaker in the suprachiasmatic nucleus (SCN) is reconfigured with its left and right halves oscillating in anti-phase. We apply the theory of coupled phase oscillators to show that stable phase-splitting requires the presence of negative coupling terms, through delayed and/or inhibitory interactions. We also find that the inclusion of real biological constraints (that the SCN contains a finite number of non-identical noisy oscillators) implies the existence of an underlying non-uniform network architecture, in which the population of oscillators must interact through at least two types of connections. We propose that a key design principle for the frequency doubling of a population of biological oscillators is inhomogeneity of oscillator coupling.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3