Phase-shift of cellular coupling induces the anti-phase synchronization between the left and right suprachiasmatic nucleus

Author:

Gu Changgui1,Zhang Yang1,Zheng Wenxin1,Wang Haiying1,Yang Huijie1,Wang Man2

Affiliation:

1. Business School, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China

2. School of Foreign Languages, Qingdao University, Qingdao 266000, P. R. China

Abstract

Exposed to the constant light, the master clock located in the bilaterally paired suprachiasmatic nucleus (SCN) above the optic chiasma exhibits three rhythmic behaviors in hamsters. Some hamsters remain or lose circadian rhythms due to synchronization or desynchronization between the SCN neurons, respectively. Interestingly, the other hamsters show a phenomenon called “split”, in which the left SCN and right SCN oscillate with a stable anti-phase. In this paper, a modified Kuramoto model is built to explain these three rhythmic behaviors, where the phase-shift of cellular coupling is taken into account. Three cases of phase-shifts are considered, including that first case exists in all the SCN neurons, second case exists between the left and right SCN, and the last case exists within each group. We found that the phase-shift is able to induce the anti-phase synchronization between the left SCN and right SCN in the former two cases, but eliminate this anti-phase synchronization in the latter case. Our findings provide an alternative explanation for the emergency of the split and shed light on the collective behaviors of the SCN neurons.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Shanghai

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3