Predicting behavioural responses to novel organisms: state-dependent detection theory

Author:

Trimmer Pete C.1ORCID,Ehlman Sean M.12ORCID,Sih Andrew1

Affiliation:

1. Department of Environmental Science and Policy, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA

2. Animal Behaviour Graduate Group, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA

Abstract

Human activity alters natural habitats for many species. Understanding variation in animals' behavioural responses to these changing environments is critical. We show how signal detection theory can be used within a wider framework of state-dependent modelling to predict behavioural responses to a major environmental change: novel, exotic species. We allow thresholds for action to be a function of reserves, and demonstrate how optimal thresholds can be calculated. We term this framework ‘state-dependent detection theory’ (SDDT). We focus on behavioural and fitness outcomes when animals continue to use formerly adaptive thresholds following environmental change. In a simple example, we show that exposure to novel animals which appear dangerous—but are actually safe—(e.g. ecotourists) can have catastrophic consequences for ‘prey’ (organisms that respond as if the new organisms are predators), significantly increasing mortality even when the novel species is not predatory. SDDT also reveals that the effect on reproduction can be greater than the effect on lifespan. We investigate factors that influence the effect of novel organisms, and address the potential for behavioural adjustments (via evolution or learning) to recover otherwise reduced fitness. Although effects of environmental change are often difficult to predict, we suggest that SDDT provides a useful route ahead.

Funder

NSF

ERC

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3