Leveraging big data to uncover the eco-evolutionary factors shaping behavioural development

Author:

Ehlman Sean M.123ORCID,Scherer Ulrike123ORCID,Bierbach David123ORCID,Francisco Fritz A.12ORCID,Laskowski Kate L.4ORCID,Krause Jens123ORCID,Wolf Max13ORCID

Affiliation:

1. SCIoI Excellence Cluster, 10587 Berlin, Germany

2. Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany

3. Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany

4. Department of Evolution and Ecology, University of California – Davis, Davis, CA 95616, USA

Abstract

Mapping the eco-evolutionary factors shaping the development of animals’ behavioural phenotypes remains a great challenge. Recent advances in ‘big behavioural data’ research—the high-resolution tracking of individuals and the harnessing of that data with powerful analytical tools—have vastly improved our ability to measure and model developing behavioural phenotypes. Applied to the study of behavioural ontogeny, the unfolding of whole behavioural repertoires can be mapped in unprecedented detail with relative ease. This overcomes long-standing experimental bottlenecks and heralds a surge of studies that more finely define and explore behavioural–experiential trajectories across development. In this review, we first provide a brief guide to state-of-the-art approaches that allow the collection and analysis of high-resolution behavioural data across development. We then outline how such approaches can be used to address key issues regarding the ecological and evolutionary factors shaping behavioural development: developmental feedbacks between behaviour and underlying states, early life effects and behavioural transitions, and information integration across development.

Funder

Deutsche Forschungsgemeinschaft

National Science Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3