Text-mined fossil biodiversity dynamics using machine learning

Author:

Kopperud Bjørn Tore1ORCID,Lidgard Scott2ORCID,Liow Lee Hsiang13ORCID

Affiliation:

1. Natural History Museum, University of Oslo, PO Box 1172, Blindern, 0318 Oslo, Norway

2. Integrative Research Center, Field Museum, 1400 South Lake Shore Drive, Chicago IL, 60605, USA

3. Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway

Abstract

Documented occurrences of fossil taxa are the empirical foundation for understanding large-scale biodiversity changes and evolutionary dynamics in deep time. The fossil record contains vast amounts of understudied taxa. Yet the compilation of huge volumes of data remains a labour-intensive impediment to a more complete understanding of Earth's biodiversity history. Even so, many occurrence records of species and genera in these taxa can be uncovered in the palaeontological literature. Here, we extract observations of fossils and their inferred ages from unstructured text in books and scientific articles using machine-learning approaches. We use Bryozoa, a group of marine invertebrates with a rich fossil record, as a case study. Building on recent advances in computational linguistics, we develop a pipeline to recognize taxonomic names and geologic time intervals in published literature and use supervised learning to machine-read whether the species in question occurred in a given age interval. Intermediate machine error rates appear comparable to human error rates in a simple trial, and resulting genus richness curves capture the main features of published fossil diversity studies of bryozoans. We believe our automated pipeline, that greatly reduced the time required to compile our dataset, can help others compile similar data for other taxa.

Funder

H2020 European Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3