Ignoring stratigraphic age uncertainty leads to erroneous estimates of species divergence times under the fossilized birth–death process

Author:

Barido-Sottani Joëlle123ORCID,Aguirre-Fernández Gabriel4ORCID,Hopkins Melanie J.5,Stadler Tanja12ORCID,Warnock Rachel124

Affiliation:

1. Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland

2. Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland

3. Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA

4. Palaeontological Institute and Museum, University of Zurich, Zurich, Switzerland

5. Division of Paleontology, American Museum of Natural History, New York, NY, USA

Abstract

Fossil information is essential for estimating species divergence times, and can be integrated into Bayesian phylogenetic inference using the fossilized birth–death (FBD) process. An important aspect of palaeontological data is the uncertainty surrounding specimen ages, which can be handled in different ways during inference. The most common approach is to fix fossil ages to a point estimate within the known age interval. Alternatively, age uncertainty can be incorporated by using priors, and fossil ages are then directly sampled as part of the inference. This study presents a comparison of alternative approaches for handling fossil age uncertainty in analysis using the FBD process. Based on simulations, we find that fixing fossil ages to the midpoint or a random point drawn from within the stratigraphic age range leads to biases in divergence time estimates, while sampling fossil ages leads to estimates that are similar to inferences that employ the correct ages of fossils. Second, we show a comparison using an empirical dataset of extant and fossil cetaceans, which confirms that different methods of handling fossil age uncertainty lead to large differences in estimated node ages. Stratigraphic age uncertainty should thus not be ignored in divergence time estimation and instead should be incorporated explicitly.

Funder

FP7 People: Marie-Curie Actions

FP7 Ideas: European Research Council

Eidgenössische Technische Hochschule Zürich

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3