Thermal landscape change as a driver of ectotherm responses to plant invasions

Author:

Garcia Raquel A.1ORCID,Clusella-Trullas Susana1ORCID

Affiliation:

1. Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

Abstract

A growing body of research demonstrates the impacts of invasive alien plants on native animals, but few studies consider thermal effects as a driver of the responses of native organisms. As invasive alien plants establish and alter the composition and arrangement of plant communities, the thermal landscapes available to ectotherms also change. Our study reviews the research undertaken to date on the thermal effects of alien plant invasions on native reptiles, amphibians, insects and arachnids. The 37 studies published between 1970 and early 2019 portray an overall detrimental effect of invasive plants on thermal landscapes, ectothermic individuals' performance and species abundance, diversity and composition. With a case study of a lizard species, we illustrate the use of thermal ecology tools in plant invasion research and test the generality of alien plant effects: changes in thermoregulation behaviour in invaded landscapes varied depending on the level of invasion and lizard traits. Together, the literature review and case study show that thermal effects of alien plants on ectotherms can be substantial albeit context-dependent. Further research should cover multiple combinations of native/invasive plant growth forms, invasion stages and ectotherm traits. More attention is also needed to test causality along the chain of effects from thermal landscapes to individuals, populations and communities.

Funder

L'Oréal-UNESCO For Women in Science

Universiteit Stellenbosch

Centre for Invasion Biology

National Research Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3