Habitat loss and degradation reduce the abundance of the glossy grass skink, Pseudemoia rawlinsoni

Author:

Farquhar Jules E.ORCID,Wotherspoon Lucy,Porter Hilary,Chapple David G.ORCID

Abstract

Context Habitat loss and degradation are major drivers of biodiversity loss worldwide. In particular, wetland environments are being removed and degraded faster than any other terrestrial habitat on earth. The loss and degradation of wetlands has been particularly pronounced in south-eastern Australia. Aims Here we investigated the impact of habitat loss and degradation on the Data Deficient glossy grass skink (Pseudemoia rawlinsoni), a species that predominantly favours wetland vegetation in south-eastern Australia. Methods We established artificial cover-object (roofing tiles) survey grids in paired remnant and disturbed sites at six locations across Victoria, Australia, and surveyed for skinks between November 2021 and April 2022. Key results Sites at which glossy grass skinks occur are characterised by tall dense vegetation, with a high cover of matted biomass. Thermal profiles within these complex vegetation structures remain much cooler during hot days, and warmer during cold nights, than external temperatures. Nearby disturbed sites (i.e. grazed or mowed areas within dispersal distance of remnant sites) are generally devoid of skinks, have very low and structurally simple (open) vegetation, and have thermal regimes that offer lizards no respite from high summer temperatures. We found that roofing tiles are an effective way to survey for glossy grass skinks; even on cool cloudy days, the temperature of tiles, and the lizards sheltering beneath them, are often much higher than ambient temperatures. Conclusions These findings implicate habitat loss and degradation as having a substantial negative impact on glossy grass skink presence and abundance; skinks largely avoid disturbed areas, even at sites immediately adjacent to remnant habitat. This may be driven not simply by the removal of tall and dense vegetation structures, but the consequent loss of the optimal thermal buffer afforded by such structures. Implications Our study emphasises the threat that habitat loss and degradation pose to wetland species in Australia, and throughout the world.

Funder

Australian Research Council

Publisher

CSIRO Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3