Untangling the roles of microclimate, behaviour and physiological polymorphism in governing vulnerability of intertidal snails to heat stress

Author:

Dong Yun-wei1ORCID,Li Xiao-xu1,Choi Francis M. P.2,Williams Gray A.3,Somero George N.4,Helmuth Brian125

Affiliation:

1. State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China

2. Marine Science Center, Northeastern University, Nahant, MA 01908, USA

3. The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong

4. Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA

5. School of Public Policy and Urban Affairs, Northeastern University, Boston, MA 02115, USA

Abstract

Biogeographic distributions are driven by cumulative effects of smaller scale processes. Thus, vulnerability of animals to thermal stress is the result of physiological sensitivities to body temperature ( T b ), microclimatic conditions, and behavioural thermoregulation. To understand interactions among these variables, we analysed the thermal tolerances of three species of intertidal snails from different latitudes along the Chinese coast, and estimated potential T b in different microhabitats at each site. We then empirically determined the temperatures at which heart rate decreased sharply with rising temperature (Arrhenius breakpoint temperature, ABT) and at which it fell to zero (flat line temperature, FLT) to calculate thermal safety margins (TSM). Regular exceedance of FLT in sun-exposed microhabitats, a lethal effect, was predicted for only one mid-latitude site. However, ABTs of some individuals were exceeded at sun-exposed microhabitats in most sites, suggesting physiological impairment for snails with poor behavioural thermoregulation and revealing inter-individual variations (physiological polymorphism) of thermal limits. An autocorrelation analysis of T b showed that predictability of extreme temperatures was lowest at the hottest sites, indicating that the effectiveness of behavioural thermoregulation is potentially lowest at these sites. These results illustrate the critical roles of mechanistic studies at small spatial scales when predicting effects of climate change.

Funder

Nature Science funds for Distinguished Young Scholars of Fujian Province, China

Program for New Century Excellent Talents of Ministry of Education, China

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3