Evidence of a tunable biological spring: elastic energy storage in aponeuroses varies with transverse strain in vivo

Author:

Arellano Christopher J.1ORCID,Konow Nicolai2ORCID,Gidmark Nicholas J.3,Roberts Thomas J.4

Affiliation:

1. Department of Health and Human Performance, University of Houston, Houston, TX 77023, USA

2. Department of Biological Science, University of Massachusetts, Lowell, MA 01854, USA

3. Department of Biology, Knox College, Galesburg, IL 61401, USA

4. Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA

Abstract

Tendinous structures are generally thought of as biological springs that operate with a fixed stiffness, yet recent observations on the mechanical behaviour of aponeuroses (broad, sheet-like tendons) have challenged this general assumption. During in situ contractions, aponeuroses undergo changes in both length and width and changes in aponeuroses width can drive changes in longitudinal stiffness. Here, we explore if changes in aponeuroses width can modulate elastic energy (EE) storage in the longitudinal direction. We tested this idea in vivo by quantifying muscle and aponeuroses mechanical behaviour in the turkey lateral gastrocnemius during landing and jumping, activities that require rapid rates of energy dissipation and generation, respectively. We discovered that when aponeurosis width increased (as opposed to decreased), apparent longitudinal stiffness was 34% higher and the capacity of aponeuroses to store EE when stretched in the longitudinal direction was 15% lower. These data reveal that biaxial loading of aponeuroses allows for variation in tendon stiffness and energy storage for different locomotor behaviours.

Funder

National Institutes of Health

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3