Muscle-tendon length and force affect human tibialis anterior central aponeurosis stiffness in vivo

Author:

Raiteri Brent JamesORCID,Cresswell Andrew Graham,Lichtwark Glen Anthony

Abstract

The factors that drive variable aponeurosis behaviors in active versus passive muscle may alter the longitudinal stiffness of the aponeurosis during contraction, which may change the fascicle strains for a given muscle force. However, it remains unknown whether these factors can drive variable aponeurosis behaviors across different muscle-tendon unit (MTU) lengths and influence the subsequent fascicle strains during contraction. Here, we used ultrasound and elastography techniques to examine in vivo muscle fascicle behavior and central aponeurosis deformations of human tibialis anterior (TA) during force-matched voluntary isometric dorsiflexion contractions at three MTU lengths. We found that increases in TA MTU length increased both the length and apparent longitudinal stiffness of the central aponeurosis at low and moderate muscle forces (P < 0.01). We also found that increased aponeurosis stiffness was directly related to reduced magnitudes of TA muscle fascicle shortening for the same change in force (P < 0.01). The increase in slope and shift to longer overall lengths of the active aponeurosis force–length relationship as MTU length increased was likely due to a combination of parallel lengthening of aponeurosis and greater transverse aponeurosis strains. This study provides in vivo evidence that human aponeurosis stiffness is increased from low to moderate forces and that the fascicle strains for a given muscle force are MTU length dependent. Further testing is warranted to determine whether MTU length-dependent stiffness is a fundamental property of the aponeurosis in pennate muscles and evaluate whether this property can enhance muscle performance.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3