How migratory populations become resident

Author:

de Zoeten Tiago1ORCID,Pulido Francisco1ORCID

Affiliation:

1. Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, 28040 Madrid, Spain

Abstract

Migratory behaviour is rapidly changing in response to recent environmental changes, yet it is difficult to predict how migration will evolve in the future. To understand what determines the rate of adaptive evolutionary change in migratory behaviour, we simulated the evolution of residency using an individual-based threshold model, which allows for variation in selection, number of genes, environmental effects and assortative mating. Our model indicates that the recent reduction in migratory activity found in a population of Eurasian blackcaps ( Sylvia atricapilla ) is only compatible with this trait being under strong directional selection, in which residents have the highest fitness and fitness declines exponentially with migration distance. All other factors had minor effects on the adaptive response. Under this form of selection, a completely migratory population will become partially migratory in 6 and completely resident in 98 generations, demonstrating the persistence of partial migration, even under strong directional selection. Resident populations will preserve large amounts of cryptic genetic variation, particularly if migration is controlled by a large number of genes with small effects. This model can be used to realistically simulate the evolution of any threshold trait, including semi-continuous traits like migration, for predicting evolutionary response to natural selection in the wild.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3