Evolution and phylogeography analysis of diploid and polyploid Misgurnus anguillicaudatus populations across China

Author:

Zhong Jia1ORCID,Yi Shaokui1ORCID,Ma Laiyan1ORCID,Wang Weimin1ORCID

Affiliation:

1. College of Fisheries, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China

Abstract

The origin and evolution of polyploid organisms have been extensively studied in plants, but this topic remains only partially understood in vertebrates, where polyploidy is relatively rare. In this study, we used Misgurnus anguillicaudatus , a fish that comprises five ploidy levels in nature, as a model animal to improve our understanding of biogeographic history and evolution of polyploid vertebrates. After collecting samples from different geographical populations in China, their ploidy levels were determined using flow cytometry. Two mitochondrial markers ( cytochrome b and control region) were then used for phylogeographic analyses to unravel the possible origins of diploids and tetraploids in China. The results showed that diploids have wider geographical distribution than tetraploids and triploids. There was no clear allopatric geographical range or boundary to divide diploid and polyploid populations. Rather, the analysis of mitochondrial DNA sequences indicated that tetraploids were autopolyploids, with lower genetic diversity than diploids. This suggests that tetraploids originated from sympatric diploids via multiple independent polyploidization events. Genetic structure patterns were similar between diploids and tetraploids, whereas complex genetic differentiation was found among different regions. The potential origin of M. anguillicaudatus was deduced to be in the Pearl River basin, which exhibited the highest nucleotide diversity and genetic differentiation. These findings provide insights into the evolution of polyploidy in vertebrates.

Funder

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3