The shape of the spatial kernel and its implications for biological invasions in patchy environments

Author:

Lindström Tom1,Håkansson Nina2,Wennergren Uno1

Affiliation:

1. IFM Theory and Modelling, Linköping University, 581 83 Linköping, Sweden

2. Systems Biology Research Centre, Skövde University, PO Box 408, 541 28 Skövde, Sweden

Abstract

Ecological and epidemiological invasions occur in a spatial context. We investigated how these processes correlate to the distance dependence of spread or dispersal between spatial entities such as habitat patches or epidemiological units. Distance dependence is described by a spatial kernel, characterized by its shape (kurtosis) and width (variance). We also developed a novel method to analyse and generate point-pattern landscapes based on spectral representation. This involves two measures: continuity, which is related to autocorrelation and contrast, which refers to variation in patch density. We also analysed some empirical data where our results are expected to have implications, namely distributions of trees ( Quercus and Ulmus ) and farms in Sweden. Through a simulation study, we found that kernel shape was not important for predicting the invasion speed in randomly distributed patches. However, the shape may be essential when the distribution of patches deviates from randomness, particularly when the contrast is high. We conclude that the speed of invasions depends on the spatial context and the effect of the spatial kernel is intertwined with the spatial structure. This implies substantial demands on the empirical data, because it requires knowledge of shape and width of the spatial kernel, and spatial structure.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3