Biased movement drives local cryptic coloration on distinct urban pavements

Author:

Edelaar Pim1ORCID,Baños-Villalba Adrian1ORCID,Quevedo David P.12,Escudero Graciela1,Bolnick Daniel I.34,Jordán-Andrade Aída1

Affiliation:

1. Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Carretera Utrera km.1, 41013 Seville, Spain

2. Department of Ethology and Biodiversity Conservation, Doñana Biological Station-Spanish Research Council (EBD-CSIC), Avenida Americo Vespucio 26, 41092 Seville, Spain

3. Department of Ecology and Evolutionary Biology, University of Connecticut, 75N. Eagleville Road, Storrs, CT 06269-3043, USA

4. Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA

Abstract

Explanations of how organisms might adapt to urban environments have mostly focused on divergent natural selection and adaptive plasticity. However, differential habitat choice has been suggested as an alternative. Here, we test for habitat choice in enhancing crypsis in ground-perching grasshoppers colonizing an urbanized environment, composed of a mosaic of four distinctly coloured substrates (asphalt roads and adjacent pavements). Additionally, we determine its relative importance compared to present-day natural selection and phenotypic plasticity. We found that grasshoppers are very mobile, but nevertheless approximately match the colour of their local substrate. By manipulating grasshopper colour, we confirm that grasshoppers increase the usage of those urban substrates that resemble their own colours. This selective movement actively improves crypsis. Colour divergence between grasshoppers on different substrates is not or hardly owing to present-day natural selection, because observed mortality rates are too low to counteract random substrate use. Additional experiments also show negligible contributions from plasticity in colour. Our results confirm that matching habitat choice can be an important driver of adaptation to urban environments. In general, studies should more fully incorporate that individuals are not only selective targets (i.e. selected on by the environment), but also selective agents (i.e. selecting their own environments).

Funder

Spanish Ministry of Economy and Competitiveness

National Science Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3