Optimizing future biodiversity sampling by citizen scientists

Author:

Callaghan Corey T.123ORCID,Poore Alistair G. B.2,Major Richard E.13,Rowley Jodi J. L.13,Cornwell William K.12

Affiliation:

1. Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia

2. Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia

3. Australian Museum Research Institute, Australian Museum, Sydney, New South Wales 2010, Australia

Abstract

We are currently in the midst of Earth's sixth extinction event, and measuring biodiversity trends in space and time is essential for prioritizing limited resources for conservation. At the same time, the scope of the necessary biodiversity monitoring is overwhelming funding for professional scientific monitoring. In response, scientists are increasingly using citizen science data to monitor biodiversity. But citizen science data are ‘noisy’, with redundancies and gaps arising from unstructured human behaviours in space and time. We ask whether the information content of these data can be maximized for the express purpose of trend estimation. We develop and execute a novel framework which assigns every citizen science sampling event a marginal value, derived from the importance of an observation to our understanding of overall population trends. We then make this framework predictive, estimating the expected marginal value of future biodiversity observations. We find that past observations are useful in forecasting where high-value observations will occur in the future. Interestingly, we find high value in both ‘hotspots’, which are frequently sampled locations, and ‘coldspots’, which are areas far from recent sampling, suggesting that an optimal sampling regime balances ‘hotspot’ sampling with a spread across the landscape.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3