Early bursts of disparity and the reorganization of character integration

Author:

Wagner Peter J.1ORCID

Affiliation:

1. Department of Earth and Atmospheric Sciences, and School of Biological Sciences, University of Nebraska, Lincoln, NE 20560, USA

Abstract

‘Early bursts' of morphological disparity (i.e. diversity of anatomical types) are common in the fossil record. We typically model such bursts as elevated early rates of independent character change. Developmental theory predicts that modules of linked characters can change together, which would mimic the effects of elevated independent rates on disparity. However, correlated change introducing suboptimal states should encourage breakup (parcellation) of character suites allowing new (or primitive) states to evolve until new suites arise (relinkage). Thus, correlated change–breakup–relinkage presents mechanisms for early bursts followed by constrained evolution. Here, I analyse disparity in 257 published character matrices of fossil taxa. For each clade, I use inverse-modelling to infer most probably rates of independent change given both time-homogeneous and separate ‘early versus late' rates. These rates are used to estimate expected disparity given both independent change models. The correlated change–breakup–relinkage model also predicts elevated frequencies of compatible character state-pairs appearing out of order in the fossil record (e.g. 01 appearing after 00 and 11; = low stratigraphic compatibility), as one solution to suboptimal states induced by correlated change is a return to states held before that change. As predicted by the correlated change–breakup–relinkage model, early disparity in the majority of clades both exceeds the expectations of either independent change model and excess early disparity correlates with low stratigraphic compatibility among character-pairs. Although it is possible that other mechanisms for linking characters contribute to these patterns, these results corroborate the idea that reorganization of developmental linkages is often associated with the origin of groups that biologists recognize as new higher taxa and that such reorganization offers a source of new disparity throughout the Phanerozoic.

Funder

Division of Earth Sciences

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3