Research on the mechanical behaviour of shale based on multiscale analysis

Author:

Han Qiang123ORCID,Qu Zhan123,Ye Zhengyin3

Affiliation:

1. College of Petroleum Engineering/Postdoctoral Innovation Base, Xi'an Shiyou University, Xi'an 710065, People's Republic of China

2. Shaanxi Key Laboratory of Well Stability and Fluid & Rock Mechanics in Oil and Gas Reservoirs, Xi'an Shiyou University, Xi'an 710065, People's Republic of China

3. School of Aeronautics/Postdoctoral Research Station, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China

Abstract

In view of the difficulty in obtaining the mechanical properties of shale, the multiscale analysis of shale was performed on a shale outcrop from the Silurian Longmaxi Formation in the Changning area, Sichuan Basin, China. The nano-/micro-indentation test is an effective method for multiscale mechanical analysis. In this paper, effective criteria for the shale indentation test were evaluated. The elastic modulus was evaluated at a multiscale and the engineering validation of drilling cuttings was performed. The porosity tests showed that the pore distribution of shale from the nanoscale to macro-pore could be better displayed by the nuclear magnetic resonance test. The micro-scale elastic modulus and hardness increased nonlinearly with the increase in the clay packing density. It was observed that the size effect of the micro-hardness was based on porosity and composition. The partial spalling of shale at the micro-scale could lead to irregular bulges or steps in a load–displacement curve. The elastic modulus of pure clay minerals was 24.2 GPa on the parallel bedding plane and 15.8 GPa on the vertical bedding plane. The contact hardness (pure clay minerals) was 0.51 GPa. The indentation results showed that the micro-elastic modulus of shale obeyed the normal distribution, and the statistical average could predict the macro-mechanical properties effectively. The present work can provide a new way to recognize the mechanical behaviour of shale.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3